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OBJECTIVE: Decreased local availability of nitric oxide (NO) may mediate chronic
vasospasm after aneurysmal subarachnoid hemorrhage (SAH). Previous reports have
shown that early treatment with NO prevents vasospasm in animals. We evaluated the
efficacy of controlled-release polymers that contain the NO donor diethylenetriamine
(DETA-NO) for the delayed treatment of vasospasm in a rabbit model of SAH.
METHODS: DETA-NO 20% (wt/wt) was incorporated into ethylene-vinyl acetate
(EVAc) polymers. Animals (n � 52) were randomized to two experimental groups. In
the first group (n � 32), animals received SAH and implantation of either 20%
DETA-NO/EVAc polymer at a dose of 0.5 mg/kg of DETA-NO (n � 16) or empty EVAc
polymer (n � 16). Polymers were implanted 24 (n � 16) or 48 hours (n � 16) after
SAH. In the second group (n � 20), animals received SAH and implantation of either
20% DETA-NO/EVAc polymer at a dose of 1.3 mg/kg (n � 10) or empty EVAc (n � 10).
Polymers were implanted 24 (n � 10) or 48 hours (n � 10) after SAH. An additional
group (n � 16) underwent either sham operation (n � 6) or SAH only (n � 10). Animals
were killed 3 days after hemorrhage, and the basilar arteries were processed for
morphometric measurements. Results were analyzed using Student’s t test.
RESULTS: Treatment with 20% DETA-NO/EVAc polymers at a dose of 1.3 mg/kg
significantly increased basilar artery lumen patency when administered at 24 (97 �
6% versus 73 � 10%; P � 0.0396) or 48 hours (94 � 6% versus 71 � 9%; P � 0.03)
after SAH. Treatment with 20% DETA-NO/EVAc polymers at a dose of 0.5 mg/kg
administered 48 hours after SAH significantly increased lumen patency (82 � 8%
versus 68 � 12%; P � 0.03); a dose of 0.5 mg/kg, 24 hours after SAH, did not reach
statistical significance (74 � 7% versus 65 � 9%; P � 0.16). The SAH-only group had
a lumen patency of 67 � 12%.
CONCLUSION: Delayed treatment of SAH with controlled-release DETA-NO poly-
mers prevented experimental posthemorrhagic vasospasm in the rabbit. This inhibition
was dose-dependent. This further confirms the role of NO in the pathogenesis of
vasospasm.
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Delayed cerebral vasospasm after aneu-
rysmal subarachnoid hemorrhage
(SAH) seems to be the result, in part,

of an imbalance between the concentration of
nitric oxide (NO) (15, 56) and of vasospastic
molecules such as endothelin-1 (10, 15, 56) in
the subarachnoid space. A decrease in NO
concentration is caused by the impaired pro-

duction of NO by endothelial cells (40) and by
the scavenging activity of oxyhemoglobin
1(17, 50), oxygen free radicals (42), and other
factors (50). Depleted NO decreases the acti-
vation of soluble guanylate cyclase within
smooth muscle cells, which then decreases cy-
clic guanosine monophosphate levels and re-
sults in vasoconstriction (1). An increase in
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endothelin-1 concentration is caused by apoptosis and degran-
ulation of macrophages and polymorphonuclear leukocytes
(13, 20) and by increased production by endothelial cells,
astrocytes, and neurons (10, 38). Endothelin-1 binds to an
endothelin-A receptor located on smooth muscle cells (38),
which activates a G�s protein that operates voltage-gated
calcium channels, as well as nonspecific cation channels,
which results in vasoconstriction (10). Endothelin-1 also binds
to an endothelin-B receptor present on endothelial cells, which
mediates the release of prostacyclin, NO, and adrenomedullin
and induces vasoconstriction in venous vessels (10, 38).

One strategy to restore arterial tone after SAH is to admin-
ister NO directly into the subarachnoid space. We have pre-
viously shown that local delivery of the NO donor compound
diethylenetriamine-NO (DETA-NO) from controlled-release
polymers implanted in the subarachnoid space prevents pos-
themorrhagic vasospasm in a rabbit model of SAH. In that
experiment, DETA-NO polymers were placed in the subarach-
noid space 30 minutes after induction of SAH (22) and signif-
icantly increased the lumen patencies of basilar arteries when
compared with no treatment (93.0 � 4.9% versus 71.4 �
11.9%) or treatment with blank ethylene-vinyl acetate (EVAc)
polymer (93.0 � 4.9% versus 73.2 � 6.4%).

Patients who experience an aneurysmal SAH, however, typ-
ically seek medical attention hours or even days after the
hemorrhage. Furthermore, surgical or endovascular interven-
tion may be delayed 12 to 24 hours after diagnosis. If the
implantation in the subarachnoid space of controlled-release
polymers with NO donors is to be useful clinically, we must
first determine whether delayed treatment with DETA-NO
prevents vasospasm. We have previously shown in the rat
femoral artery model of chronic posthemorrhagic vasospasm
that delayed treatment with DETA-NO prevents vasospasm
(66). This model, however, uses a peripheral vessel, and its
application to SAH is often questioned (35, 41).

In this study, we evaluated the efficacy of delayed therapy
with locally delivered 20% DETA-NO incorporated into EVAc
polymers in the prevention of vasospasm in a rabbit model of
SAH. Peak vasospasm in this model occurs 72 hours after
SAH. We evaluated treatment with two doses of DETA-NO at
24 and 48 hours after SAH, which represent one-third and
two-thirds of the time course preceding the onset of peak
vasospasm in the rabbit model.

MATERIALS AND METHODS

Experimental Design

Animals (n � 52) were randomized to two experimental
groups. In the first group (n � 32), animals received an SAH
followed by implantation of either a 20% DETA-NO/EVAc
polymer at a dose of 0.5 mg/kg of DETA-NO (n � 16) or an
empty EVAc polymer (n � 16). Polymer implantations were
performed 24 (n � 16) or 48 hours (n � 16) after induction of
SAH. In the second group (n � 20), animals received an SAH
followed by implantation of either a 20% DETA-NO/EVAc

polymer at a dose of 1.3 mg/kg of DETA-NO (n � 10) or an
empty EVAc polymer (n � 10). Polymers were implanted at
either 24 (n � 10) or 48 hours (n � 10) after SAH. To establish
a baseline lumen patency of the basilar artery and a percent-
age of lumen patency after induction of SAH without any
treatment, an additional group of animals (n � 16) underwent
either a sham operation (n � 6) or induction of SAH only (n �
10).

Polymer Preparation

We have previously described the technique for incorporat-
ing DETA-NO into controlled-release EVAc polymer (61, 66).
Briefly, DETA-NO (Alexis Biochemicals, Lausen, Switzerland)
and EVAc polymer (40% vinyl acetate by weight; DuPont,
Wilmington, DE) were dissolved in methylene chloride (Fisher
Chemicals, Fair Lawn, NJ) to produce EVAc polymers loaded
with 20% (wt/wt) DETA/NO. The suspensions obtained were
transferred into cylindrical glass molds and maintained at
�70°C for 1 hour. The resulting polymer cylinders were
placed in �80°C for 48 hours and then transferred to �21°C
for 1 week. The polymer rods were then placed in a vacuum
desiccator at room temperature for 48 hours to extract the
remaining methylene chloride. Empty EVAc polymers were
synthesized similarly.

Animals

New Zealand White rabbits (Oryctolagus cuniculus; Robin-
son Co., Winston Salem, NC) (n � 68) weighing an average of
3.3 kg were used in this experiment. The animals were housed
in standard animal facilities with free access to Baltimore city
water and rodent chow. The Animal Care and Use Committee
of the Johns Hopkins University School of Medicine approved
all experimental protocols.

Surgical Technique

We have previously described the technique for induction
of SAH and placement of polymers in the cisterna magna of
the rabbit (22). Briefly, after induction of anesthesia, the cer-
vical region was shaved with clippers and prepared with
alcohol and povidone-iodine solution. Ceftriaxone sodium (50
mg/kg) was prophylactically administered intramuscularly.
A midline incision was made in the suboccipital region, from
the inion to C1; the dura mater was exposed from the foramen
magnum to the lamina of C1, exposing the dura mater; and 1
ml of cerebrospinal fluid was aspirated. To induce an SAH, 1.5
to 2 ml of nonheparinized blood was aspirated from the
central ear artery and immediately injected into the cisterna
magna. The animals were then placed head down at 30 de-
grees for 30 minutes to confine the blood to the intracranial
cisterns. A parasagittal linear incision was made in the dura
mater, and either DETA-NO/EVAc or empty EVAc polymers
were placed in the cisterna magna. A piece of Gelfoam (Phar-
macia & Upjohn, Kalamazoo, MI) was placed over the inser-
tion site, and the wound was closed.
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Histological Assessment

Angiographic evidence of peak vasospasm in the rabbit
model of SAH is present at 72 hours after blood injection into
the cisterna magna (8, 16, 22). Therefore, animals were killed
at 72 hours after induction of experimental SAH by intraperi-
toneal injection of sodium pentobarbital (200 mg/kg), and in
situ perfusion/fixation was performed as previously de-
scribed elsewhere (22). The basilar artery and the brainstem
were harvested en bloc, cryoprotected, and frozen. Twenty-
micrometer transverse sections were obtained with a mic-
rotome cryostat at 200-�m intervals beginning at the basilar
termination. Tissue slices were mounted on Superfrost Plus
slides (Fisher Scientific, Fair Lawn, NJ) for hematoxylin and
eosin staining.

Morphometric Analysis

Histological sections of the basilar artery were digitized,
luminal cross sectional areas were outlined, and the circum-
ference of the basilar artery was measured by computerized
analysis (MCID; Imaging Research, Inc., St. Catharines, ON,
Canada). Sections of the basilar artery (n � 7) 20 �m thick and
200 �m apart were evaluated and averaged to control for
vessel deformation and off-transverse sections. The vessel pe-
rimeter was obtained by interactive measurements of vessel
sections. Estimated cross sectional areas were converted to
lumen-patency percentages, and absolute values were defined
by average of cross sectional areas from sham-operated
animals.

Statistical Analysis

Mean vessel perimeters are expressed as mean � standard
error of the mean. Mean perimeters of basilar arteries are
expressed as percentage of lumen patency (% lumen patency)
obtained by dividing the mean perimeter of each group by the
mean perimeter of the sham group. To determine statistical
significance, the mean vessel perimeters (measured in milli-
meters) of the basilar arteries from the treatment and control
groups for every time point and with each dose of DETA-NO
were compared using Student’s t test. A P value of �0.05 was
considered significant. Statistical analysis was performed us-
ing SPSS software, version 8.0 for Windows (SPSS, Inc., Chi-
cago, IL).

RESULTS

Treatment with 20% DETA-NO/EVAc polymers at a dose
of 1.3 mg/kg resulted in a significant increase of basilar artery
lumen patency when treatment was administered at either 24
or 48 hours after SAH. At 24 hours, animals receiving implants
of 20% DETA-NO/EVAc polymers had a 97 � 6% basilar
artery lumen patency, whereas animals receiving implants of
empty EVAc polymers had a 73 � 10% lumen patency (P �
0.03). Similarly, at 48 hours, animals receiving implants of 20%
DETA-NO/EVAc polymers had a 94 � 6% lumen patency,
whereas animals receiving implants of empty EVAc polymers
had a 71 � 9% lumen patency (P � 0.03) (Table 1, Fig. 1).

Treatment with 20% DETA-NO/EVAc polymers at the
lower dose of 0.5 mg/kg administered 48 hours after SAH
resulted in a significant increase of lumen patency (82 � 8%

TABLE 1. Lumen patency of the basilar arterya

% SEM No.

Sham 100 6

SAH only 67 12.13 10

Blank EVAc 24 h (0.5 mg/kg) 65 9.12 8

DETA-NO 24 h (0.5 mg/kg) 74 7.46 5

Blank EVAc 48 h (0.5 mg/kg) 68 12.19 8

DETA-NO 48 h (0.5 mg/kg) 82 7.75 5

Blank EVAc 24 h (1.3 mg/kg) 73 10.25 8

DETA-NO 24 h (1.3 mg/kg) 97 5.55 5

Blank EVAc 48 h (1.3 mg/kg) 71 8.82 8

DETA-NO 48 h (1.3 mg/kg) 94 6.01 5

Total 68

a SEM, standard error of the mean; SAH, subarachnoid hemorrhage; EVAc, ethylene-vinyl acetate; DETA-NO, diethylenetriamine–nitric oxide.
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versus 68 � 12%; P � 0.03). Treatment with 20% DETA-NO/
EVAc polymers at the lower dose of 0.5 mg/kg administered
24 hours after SAH showed a trend of greater basilar artery
lumen patency but did not reach statistical significance (74 �
7% versus 65 � 9%; P � 0.16) (Fig. 2). Animals in the SAH-only
group had a lumen patency of 67 � 12%.

DISCUSSION

In this study, we describe the effect of delayed treatment of
cerebral vasospasm after SAH using 20% DETA-NO/EVAc
polymers placed in the cisterna magna

of rabbits. We found that DETA-NO doses of 1.3 mg/kg
administered at 24 and 48 hours after SAH, as well as 0.5
mg/kg of DETA-NO at 48 hours (but not at 24 h), were
efficacious treatments for vasospasm in rabbits (Fig. 3).

Previously, we demonstrated that DETA-NO delivered by
controlled-release polymers at a dose of 4 mg/kg could pre-
vent and reverse chronic vasospasm in the rat femoral artery
model (66) when treatment was administered at 1, 3, or 7 days
after hemorrhage. Similarly, we showed that DETA-NO de-
livered by controlled-release polymers at a dose of 0.5 mg/kg
was effective in preventing vasospasm in the rabbit model of
posthemorrhagic vasospasm (22) when treatment was initi-
ated 30 minutes after SAH. DETA-NO therapy in patients,
however, would most likely be initiated hours or days after
SAH. In this study, we tested the efficacy of DETA-NO/EVAc
polymers in a delayed setting, which would more closely
reflect the clinical scenario.

Levels of endothelium-derived NO in the subarachnoid
space tend to decrease progressively over time. This is attrib-
uted to the scavenging effect of oxyhemoglobin (17, 50) and
oxygen free radicals (42) and to the disappearance of neuronal
NO synthase after SAH caused by the toxic effect of oxyhe-
moglobin on neurons in the adventitia of cerebral vessels (28,
52). This endothelial dysfunction is perpetuated by the accu-
mulation of vasospastic molecules such as endothelin-1 (10),
which decreases cyclic guanosine monophosphate in smooth
muscle cells, hence increasing vasoconstriction (15, 56). These
events suggest that higher levels of exogenous NO need to be
delivered to the subarachnoid space as the pathophysiological
process evolves to prevent the development of cerebral
vasospasm.

DETA-NO, a diazeniumdiolate-class NO donor, is a water-
soluble zwitterionic triamine/NO adduct, with a half-life of
approximately 20 hours (21, 26, 29, 51, 55). Diazeniumdiolates
are chemical compounds that carry the [N(O)NO]� functional
group (29). When dissolved in physiological solutions,
DETA-NO generates molecular NO in yields that approach
the theoretical 2 mol/mol. Diazeniumdiolates might be of
benefit for treatment of delayed vasospasm, given their longer
decomposition half-lives (which may allow intermittent ther-
apy), high water solubility, and stability in solid form. Intra-
arterial and intrathecal administration of DETA-NO has been
tested experimentally for treatment of posthemorrhagic cere-
bral vasospasm in canine and nonhuman primate models with
variable results (1, 51, 69). The vasodilatory benefits of
DETA-NO have also been investigated in other pathological

FIGURE 1. Histogram showing the percentage of lumen patency of basilar arteries from rabbits treated with either DETA-NO/EVAc polymers at a dose
of 1.3 mg/kg or blank polymers 24 and 48 hours after SAH.

FIGURE 2. Histogram showing the percentage of lumen patency of basilar arteries from rabbits treated with either DETA-NO/EVAc polymers at a dose
of 0.5 mg/kg or blank polymers 24 and 48 hours after SAH.
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entities such as ischemic stroke (14, 54), pulmonary hyperten-
sion (30–32), and cardiovascular disease (68, 70), among
others.

Continuous delivery of NO to the cerebral vasculature
should be maintained at sufficient levels throughout the time
period when vasospasm is likely to develop. Alternative ways
of administration of DETA-NO have included intrathecal de-
livery using catheters (1) or injections (69), or repeated intra-
arterial infusions (51), which increase the possibility of com-
plications and are affected by pharmacokinetic parameters
that alter the concentration and absorption of the drug.

Controlled-release polymers are devices capable of releas-
ing high and sustained drug concentrations at the site of
implantation with reproducible pharmacokinetic profiles and
minimal systemic toxicity. Controlled-release polymers can be
placed at the time of surgery or injected intrathecally. These
devices have been shown clinically to be efficacious in the
delivery of chemotherapeutic agents for the treatment of ma-
lignant brain tumors and have been used experimentally to
treat cerebral edema, seizures, and vasospasm in animal mod-
els (6, 7, 33, 34, 60, 62, 63, 65, 67). Furthermore, we have
previously characterized the rate and extent of diffusion of
molecules loaded into controlled-release polymers, when
polymers are placed in the subarachnoid space of rabbits with
and without SAH (53). We have shown that agents with a
molecular weight and an octanol/water partition coefficient
comparable to those of DETA-NO diffuse a distance 40 cm or
more when delivered via controlled-release polymers in the
subarachnoid space and that the presence of SAH does not
interfere with the rate and extent of diffusion in the rabbit
model.

Experimental vasospasm has been reliably induced in this
rabbit model by our group and others using the modified
technique described by Chan et al. (8). Peak vasospasm in this

model occurs at 72 hours, and adequate correlation has been
demonstrated between angiographic vasospasm and
perfusion-fixed cross sections of the basilar artery (35). Ad-
vantages of this model include analysis of an intracranial
vessel, a standardized volume of SAH, sufficient amounts of
tissue for histopathological analysis, high reproducibility, and
low cost. Disadvantages of this model include the develop-
ment of subacute vasospasm (Day 3 compared with human
peak vasospasm, which occurs 7–10 d after SAH [48, 64]), and
the absence of neurological deficits after vasospasm, a draw-
back shared by all animal models of posthemorrhagic vaso-
spasm (35, 41).

The inflammatory response present after aneurysmal SAH
seems to be mediated by cell adhesion molecules (CAMs),
present in the endothelial surface, which regulate leukocyte-
endothelial cell interactions (3, 11–13, 24, 37, 44, 45, 58, 65).
One of the most important CAMs involved in this process is
intercellular adhesion moelucule-1 (ICAM-1), which is up-
regulated through several mechanisms, including interleukin-
1�. Recent reports have demonstrated that DETA-NO inhibits
endothelial interleukin-1�-induced ICAM-1 gene expression at
the transcriptional level by decreasing the activity of the
redox-sensitive transcription factors Sp1 and AP-1 (4). After
aneurysmal SAH, erythrocytes in the subarachnoid space
form a thrombus around the vessel wall (36, 49). Acute phase
reactants such as interleukin-1� (25, 47), tumor necrosis
factor-� (2, 39), and interferon-� (27), among others, are pro-
duced in the thrombus and induce upregulation of CAMs,
particularly selectins and ICAM-1 in the endothelial layer (56).
These CAMs on the endothelial surface promote binding of
macrophages and neutrophils through their �-2 integrin re-
ceptors and cause arrest of rolling leukocytes, adhesion, and
diapedesis into the subarachnoid space (59), where they are
attracted toward the periadventitial thrombus by released che-

FIGURE 3. Cross sectional views of basilar arteries. A, section from the basilar artery of an animal that underwent a sham operation. B, section from an
animal that received SAH followed by implantation of an empty EVAc polymer. C, section from an animal that received SAH and implantation of a 20%
DETA-NO/EVAc polymer 48 hours later at a dose of 1.3 mg/kg of DETA-NO (A–C, hematoxylin and eosin; original magnification, �10).
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moattractants. After phagocytosis of erythrocytes and debris,
leukocytes die and degranulate in the subarachnoid space,
releasing endothelins (5, 10, 20), oxygen free radicals (9, 18,
57), chemokines (19, 23, 43, 46), and other products (5, 20, 22,
56) that lesion the endothelium, decrease the synthesis of
endothelium-derived NO, and cause chronic vasospasm. It is
in this setting that the administration of exogenous NO will
ameliorate or prevent vasospasm.

In conclusion, treatment with 20% DETA-NO/EVAc poly-
mers placed in the subarachnoid space of rabbits in a delayed
fashion prevents vasospasm after SAH. The effect of
DETA-NO occurs in a dose-dependent manner, and a dose of
1.5 mg/kg seems to be appropriate to reverse vasospasm in a
delayed fashion.
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