
EUKOCYTE–endothelial cell interactions, as mediated
by CAMs, appear to play a major role in the devel-
opment of posthemorrhagic cerebral vasospasm af-

ter aneurysmal SAH.14,15,23,36,40,42,44 Specific CAMs involved
in leukocyte migration into the periadventitial space after
hemorrhage include ICAM-1 (CD54),4,23,29,32,38,40,44,45 and the
�-2 integrins LFA-1 (CD11a/CD18)15 and Mac-1 (CD11b/
CD18).4,15 Intercellular adhesion molecule–1, a member of
the Ig superfamily, is expressed by endothelial cells and is
one of the main ligands for �-2 integrins.16,18,30,49 Intercellu-
lar adhesion molecule–1 is upregulated after periadventitial
blood deposition in animal models of vasospasm,1,23,44 and
increased levels of the molecule are present in the serum
and CSF of patients who experience angiographic vaso-

spasm after SAH.29,32,40 Lymphocyte function–associated
antigen–1 is located in the plasma membrane of neutrophils
and macrophages, and constitutes the main integrin for ad-
hesion and transendothelial migration of these cells after in-
teracting with endothelial ICAM-1.17,25,48 Similarly, Mac-1 is
present on the surface of macrophages and neutrophils,9 and
facilitates ICAM-1–mediated adhesion of these cells to the
endothelium.46 Other CAMs that may be involved in post-
hemorrhagic vasospasm include VCAM-1 and E-selectin.40

An anti-CD11/CD18 humanized mAb, Hu23F2G has
been shown to disrupt leukocyte–endothelial cell interac-
tions.3,5,8,27,41,52 To “humanize” the antibody, a murine mAb
against CD11/CD18 (m23F2G) was developed initially.
The complementarity-determining region of the murine an-
tibody that is responsible for antigen binding and is locat-
ed in the variable fragment of the antibody was selected and
inserted into the variable fragment of human IgG4, which
was chosen because it does not fix complement and has de-
creased binding of Fc receptors.8,52 The Hu23F2G antibody
binds to the � subunit of the integrins Mac-1, LFA-1, p150,
95(CD11c/CD18), and �d/�2.51 It prevents the interaction
of Mac-1 and LFA-1 with ICAM-1 and, thus, blocks the mi-
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Object. Adhesion of leukocytes and their migration into the periadventitial space may be critical in the pathophysiolo-
gy of vasospasm following subarachnoid hemorrhage (SAH). The cell adhesion molecules involved in this process are
lymphocyte function–associated antigen–1 (CD11a/CD18) and macrophage antigen–1 (CD11b/CD18), which are pres-
ent on neutrophils/macrophages, and intercellular adhesion molecule–1 (CD54), which is present in endothelial cells. A
humanized monoclonal antibody (mAb), Hu23F2G, targets CD11/CD18 and prevents leukocyte adhesion to endothelial
cells. In this study, systemic administration of Hu23F2G prevented vasospasm in the rabbit model of SAH. 

Methods. Twenty-six New Zealand White rabbits were injected with autologous blood into the cisterna magna to induce
SAH, after which they were randomized to receive injections of either Hu23F2G (10 animals) or a placebo at 30 minutes
and 24 and 48 hours after SAH (six animals). Control animals underwent sham operations (four animals) or SAH alone
(six animals). The animals were killed 72 hours after SAH, their bodies perfused and fixed, and their basilar arteries pro-
cessed for morphometric analysis. Peripheral white blood cells (WBCs) were counted at 72 hours. The percentages of lu-
men patency were compared using the Student t-test. The presence of neutrophils and macrophages was confirmed by im-
munohistochemical analysis in which a rat anti–rabbit anti-CD18 mAb and cresyl violet were used. 

Treatment with Hu23F2G resulted in the significant prevention of vasospasm. Animals treated with Hu23F2G had
90 � 7% lumen patency compared with 65 � 7% in the placebo group (p = 0.025). The percentage of lumen patency in
the SAH-only group was 59 � 10%. The mean WBC count was 16,300 � 2710/�l in the treatment group, compared with
7000 � 386/�l in the control group (p = 0.02). Administration of Hu23F2G produced increased numbers of WBCs in 70%
of the animals treated. 

Conclusions. This study supports the concept that leukocyte–endothelial cell interactions play an important role in the
pathophysiology of chronic vasospasm after SAH. Systemic therapy with an anti-CD11/CD18 mAb prevents vasospasm
after SAH by inhibiting adhesion of neutrophils and macrophages and their migration into the periadventitial space.
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gration of leukocytes into the periadventitial space. Prelim-
inary studies in a nonhuman primate model of SAH indicate
that Hu23F2G might be of benefit in the treatment of vaso-
spasm.14

We and others have previously shown that blocking leu-
kocyte–endothelial cell interactions with mAbs directed
against CAMs prevents posthemorrhagic vasospasm in rats,
rabbits, and monkeys.4,14,15,38 Systemic therapy with an anti–
ICAM-1 mAb prevented chronic vasospasm and decreased
the number of periadventitial macrophages and neutro-
phils38 in the rat femoral artery model of vasospasm. Treat-
ment with anti–ICAM-1 and anti–LFA-1 mAbs also pre-
vented chronic vasospasm and decreased the number of
periadventitial inflammatory cells in rats.15 Antibodies
against ICAM-1 and CD18 administered intrathecally pre-
vented vasospasm in a rabbit model as well.4 Similar-
ly, ibuprofen, which inhibits the endothelial expression of
ICAM-1 and VCAM-1,26,35 prevented vasospasm after SAH
in dogs12,13 and in the femoral artery model of vasospasm in
rats.50

We hypothesized that the systemic administration of an
anti–CD11/CD18 mAb, which could block the adhesion
of neutrophils and macrophages and their migration into
the periadventitial space, prevents vasospasm after SAH. In
this study we describe the effect of systemic therapy with
Hu23F2G on the lumen patency of the BA and on the num-
ber of peripheral WBCs in the rabbit model of vasospasm
after SAH. 

Materials and Methods

Experimental Design

Animals were randomized to four experimental groups. Animals
in the first group (sham-operated group, four animals) underwent
surgery with exposure of the dura mater only and without CSF ex-
traction or a cisternal injection of blood. Animals in the second group
(SAH-only group, six animals) underwent injection of 1.5 to 2 ml of
autologous arterial blood into the cisterna magna to create an SAH.
Animals in the third (SAH � Hu23F2G group, 10 animals) and
fourth (SAH � placebo group, six animals) groups underwent intra-
peritoneal injections of either Hu23F2G or vehicle at 30 minutes and
24 and 48 hours after blood injection. The rabbits were killed at 72
hours post-SAH, when peak vasospasm occurs in rabbits as previ-
ously determined by our group and others,10,19,22 and underwent per-
fusion fixation for histological and morphometric analysis of the BA.
Peripheral WBCs were counted 72 hours after SAH. 

Animal Selection

Twenty-six New Zealand White rabbits (Oryctolagus cuniculus
obtained from Robinson Services, Inc., Winston-Salem, NC), each
weighing 1.5 to 2.5 kg, were used in this experiment. The animals
were housed in standard animal facilities with free access to Balti-
more city water and rodent chow. The Animal Care and Use Com-
mittee of The Johns Hopkins University School of Medicine ap-
proved all experimental protocols.

Monoclonal Antibody Treatment

Both Hu23F2G and vehicle placebo were provided by ICOS Cor-
poration (Bothell, WA). The Hu23F2G antibody was formulated as
10 mg/ml in 120 mM sodium chloride, 45.2 mM sodium acetate,
and 0.02% Tween-20, which was adjusted to pH 5.6 with acetic
acid. Placebo was formulated as water for injection (US Pharma-
copeia) with 120 mM sodium chloride, 45.2 mM sodium acetate,
and 0.02% Tween-20, with the pH adjusted to 5.6 with acetic acid.
The Hu23F2G antibody was synthesized as previously described.8

Briefly, m23F2G, a murine anti-CD11/CD18 mAb, was humanized

by inserting the complementarity-determining region of m23F2G
into the variable region of human IgG4. The DNA of the new con-
struct was transfected into Chinese hamster ovarian cells, which pro-
duced the humanized antibody. Either Hu23F2G or placebo was ad-
ministered by intraperitoneal injection at a dose of 4 mg/kg. 

Anesthesia and Surgical Technique

For all procedures, the animals were anesthetized by an intramus-
cular injection of a mixture of ketamine (50 mg/kg [100 mg/ml keta-
mine HCl; Abbott Laboratories, Chicago, IL]) and xylazine (10 mg/
kg [100 mg/ml XYLA-JECT; Phoenix Pharmaceutical, Inc., St. Jo-
seph, MO]). 

We have previously described the surgical technique used for the
rabbit SAH model.22 Briefly, after induction of anesthesia, an intra-
muscular injection of ceftriaxone (20 mg/kg) was administered and,
through a midline incision, the atlantooccipital membrane was ex-
posed. In animals in the sham-operated group the operative field was
irrigated with saline solution, and the incision was closed. In the
other three experimental groups 1 ml of CSF was aspirated by cis-
ternal puncture, followed by aspiration of 1.5 to 2 ml of nonhep-
arinized blood from the central ear artery, which was then injected
into the cisterna magna. Animals in Groups 3 and 4 received either
Hu23F2G (4 mg/kg) or placebo by intraperitoneal injection 30 min-
utes and 24 and 48 hours after SAH.

Histological Assessment

Angiographic evidence of peak vasospasm in the rabbit model of
SAH is present 72 hours after blood injection into the cisterna mag-
na.10,19,22 Animals were therefore killed 72 hours after induction of
experimental SAH by an intraperitoneal injection of sodium pento-
barbital (200 mg/kg), after which in situ perfusion fixation was per-
formed. The animals were anesthetized as described earlier, a mid-
sternal thoracotomy was performed, the right atrium was pierced for
exsanguination, and the left ventricle was cannulated. Transcardiac
perfusion was performed with 300 ml of a 0.1-M phosphate-buffered
saline solution followed by 500 ml of ice-cold 4% paraformalde-
hyde, which was delivered by a peristaltic pump at 100 rpm (25 ml/
minute) (Watson-Maulden-Bredel, Falmouth, UK). 

The BA and the brainstem were harvested en bloc and immersed
in a 0.1-M phosphate buffer–20% sucrose solution at 4˚C for 3 days
for cryoprotection. Specimens were snap-frozen in �60˚C methyl-
butane and stored at �80˚C. Transverse sections (20-�m) were ob-
tained with a microtome cryostat at 200-�m intervals beginning at
the termination of the BA. Tissue slices were mounted on Superfrost
Plus slides (Fisher Scientific Co., Pittsburgh, PA) for H & E stain-
ing. Additional staining of BA cross-sections (four per group) was
performed using a rat anti–rabbit CD18 antibody and cresyl violet to
detect the periadventitial localization of CD18-positive cells. 

Morphometric Analysis

Luminal cross-sectional areas were outlined and the circumfer-
ence of the BA was measured by performing computerized analy-
sis (MCID; Imaging Research, St. Catharines, ON, Canada). Six sec-
tions of each BA (each section 20 �m thick and obtained 200 �m
apart) were evaluated and averaged to control for vessel deformation
and off-transverse sections. The vessel perimeter was obtained by
interactive measurements of vessel sections. Estimated cross-sec-
tional areas were converted to lumen-patency percentages and abso-
lute values were defined by the average of cross-sectional areas from
sham-operated animals. 

Statistical Analysis

Vessel perimeters and WBC counts are expressed as mean val-
ues � standard errors of the means. Mean perimeters of the BAs are
expressed as percentages of lumen patency obtained by dividing the
mean perimeter of each group by the mean perimeter of the sham-
operated group. Mean vessel perimeters (in millimeters) were com-
pared using the Student t-test. A probability value less than 0.05
was considered significant. Statistical analysis was performed using
SPSS Version 8.0 for Windows (SPSS, Inc., Chicago, IL). 
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Results

Treatment with Hu23F2G resulted in a significant in-
crease in BA lumen patency as well as in the peripheral
WBC counts. Whereas the lumen patency of the SAH �
Hu23F2G group was 90 � 7%, that of the SAH � place-
bo group was 65 � 7% (p = 0.025) (Fig. 1). By comparison
the lumen patency of the SAH-only group was 59 �
10%. Similarly, although the peripheral WBC count of the
SAH � Hu23F2G group was 16,300 � 2710/�l, that of the
SAH � placebo group was 7000 � 386/�l (p = 0.02; Fig.
2). It was noted that within the SAH � Hu23F2G group
seven of 10 animals had elevated peripheral WBC counts,
but three did not. The mean peripheral WBC counts in ani-
mals whose response was an elevated count was 20,517 �
2371/�l, compared with 6310 � 505/�l in animals without
elevated WBC counts (p = 0.005). Qualitative observations
of immunohistochemical tests for CD18 showed a decrease
in CD18-positive cells in the periadventitial space of BAs
from rabbits treated with Hu23F2G when compared with
the periadventitial space of BAs from animals treated with
placebo (Fig. 3). 

Discussion 

In this study we describe the systemic administration of a

humanized anti-CD11/CD18 mAb for the treatment of va-
sospasm in a rabbit model of SAH. We found that treatment
with Hu23F2G resulted in increased lumen patencies, pre-
vention of morphometric vasospasm, and increased num-
bers of peripheral WBCs. The Hu23F2G antibody binds
to �-2 integrins including LFA-1 and Mac-1, which are
expressed on the surface of macrophages and neutrophils.
Such binding prevents their interaction with ICAM-1 and,
thus, their adhesion to the endothelial surface. The biologi-
cal effect of Hu23F2G was confirmed by an increase in pe-
ripheral WBCs at 72 hours after SAH, which was observed
in 70% of the treated animals. 

The Hu23F2G antibody has been used previously in New
Zealand White rabbits, nonhuman primates, and humans.
A reduced likelihood of immunogenic reactions has been
achieved by humanizing the antibody, which markedly de-
creases the likelihood of a human anti–mouse antibody type
reaction and maintains the binding efficacy of the mu-
rine precursors. Whereas a human anti–mouse antibody re-
sponse has been identified in 20 to 40% of patients treated
with murine antibodies, such a response has been identified
in only 7% of patients treated with humanized antibodies.6
The Hu23F2G antibody uses the human IgG4 heavy chain,
which has a decreased fixation of complement and low
binding of Fc receptors.27,52

Upregulation of ICAM-1 and other CAMs on the endo-
thelial surface following aneurysmal SAH promotes bind-
ing of macrophages and neutrophils through LFA-1 and
Mac-1, thus creating a determinant event in the pathogen-
esis of posthemorrhagic vasospasm.15 After aneurysmal
SAH, erythrocytes in the subarachnoid space cluster around
the vessel wall as a thrombus. Acute-phase reactants such
as interleukin-1�,39 tumor necrosis factor–�,1 and interfer-
on-�,24 among others, are produced in the thrombus and
induce upregulation of selectins and ICAM-1 in the en-
dothelial layer.42 Upregulation of ICAM-1 causes the ar-
rest of rolling leukocytes, adhesion, and diapedesis into the
subarachnoid space.47 Macrophages and neutrophils in the
subarachnoid space are then attracted into the periadven-
titial thrombus by released chemoattractants. These leuko-
cytes proceed to phagocytose erythrocytes and debris. After
phagocytosis, however, the leukocytes die in the subarach-
noid space and release ETs,11,20 O2 free radicals,43 chemo-
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FIG. 2. Bar graph demonstrating that systemic treatment of rab-
bits with Hu23F2G caused a significant elevation in the number of
peripheral WBCs, whereas treatment with placebo did not.

FIG. 1. Bar graph showing that treatment with Hu23F2G result-
ed in a significant increase in the percentage of lumen patency of the
BA compared with treatment with placebo or no treatment. Asterisk
indicates significance.

FIG. 3. Photomicrographs showing frozen cross-sections of the
BA. Left: Tissue obtained from a rabbit treated with placebo af-
ter SAH. Arrowheads indicate CD18-positive cells (macrophages
and neutrophils). Right: Tissue obtained from a rabbit treated with
Hu23F2G after SAH. Cresyl violet and anti-CD18 mAb, original
magnifications � 15 (left) and � 10 (right).



kines,21 and other products,7,15,20,42 which damage the endo-
thelium, decrease the synthesis of endothelium-derived NO,
and cause chronic vasospasm. 

The rabbit model of SAH was first described by Offer-
haus and van Gool37 in 1969 to analyze electrocardiograph-
ic changes after SAH. Nevertheless, the most common
type of rabbit model used to induce vasospasm after SAH
is the one described by Chan and associates10 in which SAH
is created by injection of arterial blood into the cisterna
magna.28 This method has achieved excellent correlation
between angiographic vasospasm and morphometric mea-
surements of perfusion-fixed cross-sections of the BA.31 In-
jection of blood into the cisterna magna results in histo-
pathological10 as well as chemical changes34 in the BA with
peak vasospasm occurring 72 hours after SAH.19,22 In our
series we had a mortality rate of less than 10%. Disadvan-
tages of this model include the development of subacute va-
sospasm (on Day 3 in comparison with the human disease
in which vasospasm occurs 7–10 days after SAH) and the
absence of neurological deficits after vasospasm; however,
the latter is true for all animal models of posthemorrhagic
vasospasm.28,31

The inflammatory CAM hypothesis of vasospasm after
SAH can be reconciled with the extensive evidence that
shows the important role of ETs and NO depletion in vaso-
spasm. Macrophages and neutrophils in the subarachnoid
space release vasospastic molecules, particularly ET-1.7,20,42

Endothelin-1, the most common isoform of ET, is a po-
tent vasospastic molecule involved in posthemorrhagic va-
sospasm. In addition, ET-1 is also secreted by endothelial
cells, neurons, and astrocytes.7,20 Endothelin-1 binds primar-
ily to the ETA receptor located mainly in smooth-muscle
cells and activates a G�s protein that controls voltage-
dependent Ca channels, resulting in vasoconstriction.11 Si-
multaneously, ET-1 contributes to the decreased synthesis
of NO, impairing NO-dependent vasodilation.2 After neu-
trophils and macrophages degranulate, free radicals such as
OH� and O2

� are released into the periadventitial space and
eliminate endothelium-dependent relaxation2 through de-
struction of endogenous NO. These free radicals also cause
lipid peroxidation, enzymatic inhibition, and elevation of
Ca��, among other events,33 which damage the endothelium
and contribute to the development of vasospasm.

Conclusions

Treatment with Hu23F2G, which disrupts interactions
between endothelial ICAM-1 and the leukocyte integrins
LFA-1 and Mac-1, and thus could prevent the migration of
neutrophils and macrophages into the periadventitial space,
prevents morphometric vasospasm after SAH in rabbits.
These findings support the role of leukocyte–endothelial
cell interactions in the pathogenesis of chronic posthemor-
rhagic vasospasm.
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